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Hydrogeology of the Valley-Fill Aquifer in the Onondaga Trough,

Onondaga County, New York

In cooperation with the Onondaga Lake Cleanup Corporation and the Onondaga Lake Partnership

By William M. Kappel and Todd S. Miller

Example of a steam-powered “teeter-totter” or “Walk/ng-bea/ﬁ “drill rig used in the middle to late 19th Century
to drill through as much as 400 feet of unconsolidated sediments to obtain concentrated brine from the deep valley-fill
deposits along the southern shore of Onondaga Lake, New York. (Courtesy of the Onondaga County Salt Museum.)

Continuing efforts to improve water quality in Onondaga Lake, New York and its
tributaries require an understanding of how the natural, brine-filled aquifer in the Onondaga
Trough (valley) affects the freshwater in Onondaga Lake. The city of Syracuse, locally
known as “The Salt City,” was built around the salt springs, which issued from a valley-fill
aquifer that contains a highly concentrated brine (up to six times as salty as sea water), but
little is known about the source of the brine, its movement within the glacial sediments that
partly fill the Onondaga Trough, and the interaction of the aquifer and the lake. This report
summarizes initial data-collection and analysis efforts in the 25-mile long Onondaga Trough
that extends from near Tully, N.Y., to the outlet of Onondaga Lake and presents results
of some initial chemical and geographic analyses that will lead to the development of a
mathematical ground-water-flow model of the valley-fill aquifer.

Introduction

The U.S. Geological Survey (USGS), in cooperation with the Onondaga Lake Clean-up
Corporation and Onondaga Lake Partnership, is currently (2005) developing a ground-water-
flow model of the unconsolidated deposits (valley-fill aquifer) in the Onondaga Trough
to determine the direction and rate of flow of brine in the aquifer and its interaction with
Onondaga Lake. The purpose of this report is to describe the geologic and water-quality data
that are being used to develop conceptual and mathematical models of the aquifer.

Geologic Data Collection — The primary source of geologic data are logs of test holes
drilled at construction sites throughout the valley for buildings, roads, bridges, public
utilities, and other projects. Many of these projects are concentrated in the urban area of
Syracuse and along major highways. Test holes outside Syracuse are scant and the data
are generally less detailed because only limited geologic data are required for most small-
scale construction in rural areas. Test-hole logs (descriptions of materials penetrated)
provide data on stratigraphy (layering of the glacial sediment), soil properties (permeability,
compactness, texture, and color), and ground-water levels encountered during drilling. Test
holes can be drilled into unconsolidated material only or they may penetrate into bedrock.
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Most of the test-hole logs used in this study were provided by the New York
State Department of Transportation, especially those from the Interstate corridors
(I-81, I-90, I-481, and 1-690) and the many road- and bridge-construction
projects throughout the study area. Additional logs of local projects (public
buildings, utility corridors, and road construction) were provided by the city
of Syracuse and Onondaga County, and private construction projects (large
buildings, office complexes, and malls) provided others.

Supplemental information in rural areas was obtained from hydrogeologic
data obtained from local ground-water studies and from a statewide, well-
registration program established in 2000 by the New York State Department of
Environmental Conservation (NYSDEC). Additional stratigraphic data for the
valley-fill deposits were obtained from 12 deep test holes drilled for the USGS
between 2002 and 2004.

Geologic Data Analysis — A bedrock geologic section along the thalweg
(deepest part) of the valley was developed to depict the general southward dip
of the bedrock (40 to 50 feet per mile) and the approximate location of these
bedrock units along and beneath the valley walls and floor.

Geologic sections of unconsolidated materials were drawn across the
Onondaga Valley, or a major tributary valley, where the available information
was sufficient for geologic interpretation. A total of 17 geologic sections
between the outlet of Onondaga Lake and the moraine at Tully, were drawn.
These sections depict the configuration of the bedrock surface below the
valley floor, as well as the layering within the unconsolidated deposits above
the bedrock. Stratigraphic details are omitted where data were unavailable
within part of a geologic section, and in these cases, the bedrock profile is
approximated.

A longitudinal geologic section of the Onondaga Trough was drawn using six
geologic sections that incorporates data from and between these sections into an
approximation of the unconsolidated deposits along the thalweg of the valley.

Geographic Analysis of Data — The development of the ground-water-flow
model of the Onondaga valley-fill aquifer will require the compilation and
display of large amounts of data, such as a digital-elevation model (DEM) of
land-surface elevation, depth to bedrock from test holes drilled throughout the
valley, water-table elevations, and type and thickness of unconsolidated deposits.
These data are managed through a geographic information system (GIS). Data
analyzed in this GIS will be used during development and calibration of the
ground-water-flow model.

Brine Analysis — The quality of brine was determined through analysis of
water collected from test holes drilled for the USGS in 2002 and 2003. These
data were needed to measure brine concentrations throughout the valley-fill
aquifer and determine the origin of the brine. These data are to be incorporated
into the hydrogeologic framework of the regional ground-water-flow model that
is to represent the valley-fill aquifer in the Onondaga Trough.

Figure 1. Oblique view of the land surface in and around the Onondaga
Trough, as viewed from the southeast, looking northwest.

Figure 2. Oblique view of the bedrock surface in the Onondaga Trough, as viewed from
the southeast, looking northwest. Data were obtained by subtracting test-hole elevation
data from the 10-meter digital-elevation model of the land surface. Not enough data are
available outside the Onondaga Trough for reliable interpretation of the bedrock surface
in the upland areas or in adjacent valleys.
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Figure 3. Onondaga Trough projected as a plan or
“birds-eye” view.
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Figure 4. Elevation contours of the Onondaga Trough.

GIS- Based Assessment of the Onondaga Trough

Two initial products of the geographic
information system (GIS) analysis are shaded-relief
maps of (1) the land surface in the Syracuse area
(fig. 1) and (2) the underlying bedrock surface
(fig. 2) in the Onondaga Trough. The bedrock-
surface map was generated by interpolating
elevation data from test-hole logs and other data
sources, and subtracting these values from the
Digital Elevation Model (DEM) land-surface-
elevation value at each well location. The resulting
dataset is to be directly applied to the ground-
water-flow model to generate mathematical grids
of the bedrock surface that will establish the
hydrogeologic framework for model simulation.

The shaded-relief map in figure 1 was developed
from the USGS 10-meter DEM of land-surface
elevations. The elevation data were derived from
various sources, including topographic maps and
recent air and satellite imagery. The image for
figure 1 was then rotated to provide an oblique
view of the Onondaga Trough (as if the viewer
were flying northwestward toward Syracuse from
the southeast). The upland area to the south (in the
white to brown shades) is the northern extent of
the Appalachian Plateau. The dark green to light
green colors indicate land-surface elevations that
slope down to the Lake Ontario Plain — the plain is
shown as the light blue area on the northern end of
the image. The darker blue is Onondaga Lake.

The bedrock floor of the Onondaga Trough is
depicted in figure 2 as if all the glacial sediments
have been removed from the valley. Bedrock-
elevation data from the upland areas surrounding
the Onondaga Creek, Otisco Lake, and Butternut
Creek Valleys are insufficient to provide a reliable
image of the surrounding bedrock surface on this
map; therefore, the land outside the Onondaga
Trough represents surface elevation, not bedrock
elevation.
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GENERALIZED BEDROCK GEOLOGIC SECTION -
TULLY MORAINE TO ONONDAGA LAKE NEAR SYRACUSE
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Figure 5. Geologic section along the thalweg of the Onondaga trough valley from the Tully Moraine to the Onondaga Lake outlet showing the generalized bedrock stratigraphic sequence.

A “birds-eye-view” of the bedrock-surface map shown in figure 2 is given in
figure 3, and a contoured representation of the bedrock surface of the Onondaga
Trough is shown in figure 4. Small, circular depressions and hills, mostly outside
the main valley are shown in figure 3. These features reflect individual bedrock
(well) elevations so widely scattered that the GIS process could not accurately link
them to draw a representative bedrock surface in those areas.

The bedrock-surface elevations depicted in figure 4 range from mean sea level
[National Geodetic Vertical Datum of 1929 (NGVD 29)] in the deepest part of this
bedrock valley to greater than 550 feet on the hillsides to the south. The bedrock

reaches elevations greater than 1,400 feet along ridge tops on either side of the
valley, but upland features are not depicted on this map.

The lowest part of the bedrock valley is under the southern end of Onondaga
Lake and the city of Syracuse. The bedrock floor of the valley rises southward, to
and south of the Tully Moraine, and continues to gradually rise further to the south.
The bedrock floor also rises to the north under Onondaga Lake. The thickness of
unconsolidated valley-fill deposits along the thalweg of the Onondaga Trough, from
Onondaga Lake to the Tully Moraine, averages 420 feet, but near the Tully Moraine
it exceeds 800 feet (Kappel and Miller, 2003).



Bedrock Stratigraphy

The geologic section of bedrock units along and beneath the Onondaga Trough
from Tully to the Onondaga Lake outlet (fig. 5) depicts the approximate bedrock-
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Unconsolidated Geologic Sections (A-A' to I-I') in the Onondaga Trough and (J-J' to Q-Q’) in Adjacent Tributary Valleys
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Source of the Brine

The brine found in the Onondaga valley-fill aquifer could be derived from either
(1) the dissolution of local halite (rock salt) beds found in the Syracuse Shale south
of the city, or (2) from deeper bedrock formations below the Lockport Dolomite
(figs. 5 and 6) in the Appalachian Basin of New York, Pennsylvania, and eastern
Ohio. Water-quality samples were taken from test holes drilled for the USGS to the
base of the Onondaga Trough (approximately 420 feet deep) to determine the source
of the brine. The brine samples were tested for major ion concentrations as well as
stable isotope concentrations. Results of these analyses were consistent with salinity
from rock salt (dissolution of local halite beds) rather than salinity contributed by
(regional) Appalachian Basin formation waters (Baldauf, 2003). This finding is
encouraging because brine derived from halite dissolution contains mainly sodium
chloride with minor amounts of heavy metals, whereas deep-basin brines have high
concentrations of metals that could impair water quality in the lake.
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Figure 8. Chloride concentration as a function of sodium concentration in brine from
historic and current Onondaga Valley datasets. (Data from Baldauf, 2003, fig. 14).

A plot of chloride concentration as a function of sodium concentration in brine
samples from different sources in the Onondaga Trough is shown in figure 8. These
sources are artesian-pressured springs and mudboils in the southern end of the valley
(Kappel, 1996), and 19th century data from brine springs and deep brine wells near
Onondaga Lake, which are compared with average seawater and a composite of
Appalachian Basin brine samples (Siegel and others, 1990). All samples except the
Appalachian Basin brine fall along the halite-dissolution line, supporting the thesis
that the Onondaga Trough brine is not from an Appalachian Basin source (Baldauf,
2003). A plot of bromide concentration as a function of chloride concentration in
samples from deep USGS wells and Appalachian Basin brine (fig. 9) indicates that
the Appalachian brine is typically enriched with bromide, whereas the Onondaga
Trough brine contains negligible bromide concentrations.
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Figure 9. Bromide concentration as a function of chloride concentration in brine from
U.S. Geological Survey test holes installed in the Onondaga Valley during the summer
of 2002 (Data from Baldauf, 2003, fig. 19).



A plot of strontium concentration as a function of calcium concentration

in USGS well samples (fig. 10) shows the trend line for the Onondaga Trough

samples to be slightly steeper than the trend line for Appalachian Basin
samples, further differentiating the two sources of the brine. A plot of the
isotopic content of deuterium (D) as a function of oxygen-18 (180) in brine
samples from Onondaga Trough wells and Appalachian Basin brine is given
in figure 11. The “light” isotope values from the Onondaga Trough wells
cluster around the “local” meteoric water line that represents recharge water
from local (recent) sources, the “heavier” isotopic signal represents deeper,
older, and more distant Appalachian Basin water.
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Figure 10. Strontium concentration as a function of calcium concentration of
unconsolidated-sediment matrix water from U.S. Geological Survey test holes
drilled in the Onondaga valley during the summer of 2002 (Data from Baldauf,
2003, fig. 18).
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Mullins, Syracuse University).
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Brine Concentrations in the Onondaga Valley-Fill Aquifer

Preliminary analysis of water samples collected from deep wells
throughout the Onondaga valley-fill aquifer indicate that the brine tends
to increase in concentration toward the northern end of the aquifer near
Onondaga Lake. At present, brine concentrations are highest near the outlet
of the lake and in the lower sections of the Ninemile Creek tributary valley
(fig. 12), rather than in the deepest part of the aquifer beneath and south of
the southern end of the lake (fig. 4), where the densest (heaviest) brine would
normally settle.

Historical records of brine concentrations from wells drilled for the
production of salt during the mid-19th century indicate that, when the
deepest wells were drilled, the most-concentrated brine was about 80-percent
saturated (Kappel, 2000), or about six times as salty as seawater. This brine
would yield about 2.0 pounds of salt from every gallon of brine withdrawn
from the aquifer. After 5-6 decades of pumping, the concentrations had
decreased to about 60-percent saturation — about four times as salty as
seawater (Kappel, 2000) or about 1.5 pounds of salt per gallon of brine.
Because these wells were located near the southern end of the lake, the lower
brine concentrations seen today in deep wells in this area (Lake Inlet and
Spencer St. wells, fig. 12) may indicate that the most concentrated brines had
been extracted from the aquifer by the end of the 19th century. The higher
concentrations seen today (2004) near the lake outlet and near the outlet
of the Ninemile Creek valley may be remnant concentrations of brine still
trapped within this part of the aquifer.

Ground water along the Seneca River upstream of the lake outlet in 2003
was fresh (having low dissolved-solids concentrations), as indicated by
samples from a test well drilled at the Baldwinsville wastewater-treatment
plant (WWTP), where depth to bedrock was only 46 feet. A similar test well
was drilled along the Seneca River at the Wetzel Road WWTP (fig. 12),
downstream from the lake outlet. Depth to bedrock at this location was 104
feet, and the water was brine. This difference in water quality is attributed to
(1) the configuration of the Seneca River channel — shallow bedrock upstream
from the lake outlet and deeper bedrock downstream; (2) the northward
direction of flow in the river — from Baldwinsville toward Wetzel Road, and
(3) the presence of strong brine in the lake outlet area that naturally flowed
into the deeper part of the Seneca River bedrock valley. The salty water that
is found in the bedrock further north, near Lake Ontario, is assumed to be a
deep-basin brine flowing slowly northward through the Vernon Shale, the
Lockport Dolomite, and deeper bedrock units (Kantrowitz, 1970).

Salinity as Seawater Equivalent
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Figure 12. Locations of test holes drilled to bedrock in the Onondaga, Ninemile Creek,
and Seneca River valleys in 2002-03 and the results of salinity analyses, as expressed in
seawater-equivalent values.
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Two wells were drilled offshore in Onondaga Lake during the
summer of 2003 (Parkway and West Trail sites) as part of this
study. These wells were drilled nearly 400 feet from shore and
penetrated more than 100 feet of unconsolidated sediment before
entering the Vernon Shale. The water in each well was about 2.5
times as salty as seawater, even at these shallow depths in the
valley-fill aquifer.

A test hole was drilled 189 feet to reach bedrock in the Ninemile
Creek tributary valley, just downstream from the village of
Camillus. Water from the bedrock was saline (70 percent as salty as
sea water), and the source of the salty water was probably ground
water flowing up dip (northward) through bedding-plane fractures
in the Vernon Shale. A test hole drilled within a calcium-chloride-
rich industrial wastebed area, close to Onondaga Lake, penetrated
bedrock at 135 feet and the water was a concentrated brine. The
source of this water was probably remnant valley-fill aquifer brine
that was unaffected by the pumping of brine at the southern end of
the lake during the middle-to-late 1800’s.

Salinity in the southern part of the Onondaga Trough (the Tully
Valley) is variable. Water at the Tully Moraine is fresh, at a depth
of 730 feet below land surface. Whereas further north, the water
ranges from fresh to nearly brackish (about 20 percent as salty as
seawater) in flowing wells and in springs that discharge on the
valley floor in and around the Tully Valley mudboil area (fig. 12).
Springs along the western flank of the valley that discharge within
four landslide areas north of the mudboil area, range from fresh to
saline. A 380-foot-deep domestic well along the valley floor in this
area discharges saline water, whereas just to the north, a 420-foot
deep test well (Apple Festival, fig. 12) and some 250-foot-deep
domestic wells arrayed across the valley floor discharge water that
is generally fresh. All of these wells are artesian-pressured, having
hydraulic heads (water levels) tens of feet above land surface. Fine-
grained sediments most likely confine the valley-fill aquifer in this
part of the valley, causing artesian pressures and limiting the flow
of ground water northward into the northern part of the valley-fill
aquifer. Brackish to saline water discharging from springs and wells
in the Tully Valley enters Onondaga Creek, but this water is diluted
by the volume of freshwater flowing in the creek.

-12-
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Summary

Efforts to improve water quality in Onondaga Lake,
N.Y. and its tributaries require an understanding of how the
natural, brine-filled aquifer in the Onondaga Trough affects
the freshwater in Onondaga Lake. Little was known about
the source of the brine, its movement within the glacial
sediments (valley-fill aquifer) that partly fill the Onondaga
Trough, and the interaction of the aquifer and the lake. Initial
data-collection and analysis efforts by the U.S. Geological
Survey in the 25-mile long Onondaga Trough indicate that
(1) the trough is deepest near the city of Syracuse and under
the southern end of Onondaga Lake, (2) the brine was formed
naturally by the dissolution of halite deposits in the bedrock
which lie to the south of Syracuse, and (3) the concentration
of the brine is highest under the central and northern part of
the valley-fill aquifer. All of the geologic and water-quality
data collected to date will be used in the development of a
mathematical model of ground-water flow in the valley-fill
aquifer that will assist others to improve water quality in
Onondaga Lake.
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